Classical theory of electric and magnetic fields

Summary
Classical Theory of Electric and Magnetic Fields is a textbook on the principles of electricity and magnetism. This book discusses mathematical techniques, calculations, with examples of physical reasoning, that are generally applied in theoretical physics. This text reviews the classical theory of electric and magnetic fields, Maxwell's Equations, Lorentz Force, and Faraday's Law of Induction. The book also focuses on electrostatics and the general methods for solving electrostatic problems concerning images, inversion, complex variable, or separation of variables. The text also explains magnetostatics and compares the calculation methods of electrostatics with those of magnetostatics. The book also discusses electromagnetic wave phenomena concerning wave equations with a source term and the Maxwell equations which are linear and homogenous. The book also explains Einstein's the Special Theory of Relativity which is applicable' only to inertial coordinate systems. The text also discusses the particle aspects of electromagnetic field equations such as those concerning wave equations for particles with spin. This textbook is intended for graduate or advanced students and academicians in the field of physics.
Similar Books
-
-
Quantum Groups
by Christian Kassel
-
Introduction to Computational Fluid Dynamics
by Anil W. Date
-
The Quantum Mechanics Solver: How to Apply Quantum Theory to Modern Physics
by Jean-Louis Basdevant
-
Molecular Collision Theory
by M.S. Child
-
Acoustic Fields and Waves in Solids
by Bertram Alexander Auld
-
Quantum Electrodynamics With Unstable Vacuum
by V.L. Ginzburg
-
High-Order Methods for Computational Physics
by Timothy J. Barth
-
Electroweak Theory
by Emmanuel A. Paschos
-
White Noise Theory of Prediction, Filtering and Smoothing
by Gopinath Kallianpur
-
Explosive Instabilities in Mechanics
by Brian Straughan
-
-
Elementary Particle Physics
by Ian R. Kenyon
-
Electroweak Processes in External Electromagnetic Fields
by Alexander Kuznetsov
-
Acoustic Fields and Waves in Solids, 2 Vol. Set
by B.A. Auld
-
Surveys on Solution Methods for Inverse Problems
by David L. Colton
-
The Energy Method, Stability, and Nonlinear Convection
by Brian Straughan
-
Directions in Mathematical Systems Theory and Optimization
by Anders Rantzer
-
Numerical "Particle-in-Cell" Methods: Theory and Applications
by Yu.N. Grigoryev
-
The Boundary Element Method for Groundwater Flow
by E.K. Bruch
-
Thermal Physics
by Bruce Hoeneisen
-
Nonlinear Mechanics
by Demeter G. Fertis
-
Minimal Flows and Their Extensions (Volume 153)
by Joseph Auslander
-
Mathematical Modelling of Heat and Mass Transfer Processes
by V.G. Danilov