The Boundary Element Method for Groundwater Flow

Summary
In this book the application of the boundary element method to the solution of the Laplace equation is examined. This equation is of fundamental importance in engineering and science as it describes different types of phenomena, inclu- ding the groundwater flow applications highlighted in this book. Special subjects such as numerical integration, subdi- visionof the domain into regions and other computational aspects are discussed in detail in the first chapters. To demonstrate the accuracy and efficiency of the boundary ele- ment method, results obtained when solving the Laplace equa- tion have been compared against known analytical solutions. Other chapters deal with problems such as steady and unstea- dy flow in addition to infiltration problems. The applica- tions demonstrate that the boundary element method provides a powerful solution technique which can be effectively ap- plied to solve this type of problem.
Similar Books
-
-
Quantum Groups
by Christian Kassel
-
Introduction to Computational Fluid Dynamics
by Anil W. Date
-
The Quantum Mechanics Solver: How to Apply Quantum Theory to Modern Physics
by Jean-Louis Basdevant
-
Molecular Collision Theory
by M.S. Child
-
Acoustic Fields and Waves in Solids
by Bertram Alexander Auld
-
Quantum Electrodynamics With Unstable Vacuum
by V.L. Ginzburg
-
High-Order Methods for Computational Physics
by Timothy J. Barth
-
Electroweak Theory
by Emmanuel A. Paschos
-
White Noise Theory of Prediction, Filtering and Smoothing
by Gopinath Kallianpur
-
Explosive Instabilities in Mechanics
by Brian Straughan
-
-
Elementary Particle Physics
by Ian R. Kenyon
-
Electroweak Processes in External Electromagnetic Fields
by Alexander Kuznetsov
-
Acoustic Fields and Waves in Solids, 2 Vol. Set
by B.A. Auld
-
Surveys on Solution Methods for Inverse Problems
by David L. Colton
-
Classical theory of electric and magnetic fields
by Roland H. Good
-
The Energy Method, Stability, and Nonlinear Convection
by Brian Straughan
-
Directions in Mathematical Systems Theory and Optimization
by Anders Rantzer
-
Numerical "Particle-in-Cell" Methods: Theory and Applications
by Yu.N. Grigoryev
-
Thermal Physics
by Bruce Hoeneisen
-
Nonlinear Mechanics
by Demeter G. Fertis
-
Minimal Flows and Their Extensions (Volume 153)
by Joseph Auslander
-
Mathematical Modelling of Heat and Mass Transfer Processes
by V.G. Danilov