Acoustic Fields and Waves in Solids

Summary
Volume One begins with a systematic development of basic concepts (strain, stress, stiffness and compliance, viscous clamping) and coordinate transformations in both tensor and matrix notation. The basic elastic field equations are then written in a form analogous to Maxwell's equations. This analogy is then pursued when analyzing wave propagation in both isotropic and anisotropic solids. Piezoelectricity and bulk wave transducers are treated in the final chapter. Appendixes list slowness diagrams and material properties for various crystalline solids. Volume Two applies the material developed in Volume One to a variety of boundary value problems (reflection and refraction at plane surfaces, composite media, waveguides, and resonators). Pursuing the electromagnetic analogue, analytic techniques commonly used in electromagnetism (for example, normal mode emissions), are applied to elastic problems. Two final chapters treat perturbation and variational methods. An appendix lists properties of Rayleigh surface waves on single crystal substrates.
Similar Books
-
-
Quantum Groups
by Christian Kassel
-
Introduction to Computational Fluid Dynamics
by Anil W. Date
-
The Quantum Mechanics Solver: How to Apply Quantum Theory to Modern Physics
by Jean-Louis Basdevant
-
Molecular Collision Theory
by M.S. Child
-
Quantum Electrodynamics With Unstable Vacuum
by V.L. Ginzburg
-
High-Order Methods for Computational Physics
by Timothy J. Barth
-
Electroweak Theory
by Emmanuel A. Paschos
-
White Noise Theory of Prediction, Filtering and Smoothing
by Gopinath Kallianpur
-
Explosive Instabilities in Mechanics
by Brian Straughan
-
-
Elementary Particle Physics
by Ian R. Kenyon
-
Electroweak Processes in External Electromagnetic Fields
by Alexander Kuznetsov
-
Acoustic Fields and Waves in Solids, 2 Vol. Set
by B.A. Auld
-
Surveys on Solution Methods for Inverse Problems
by David L. Colton
-
Classical theory of electric and magnetic fields
by Roland H. Good
-
The Energy Method, Stability, and Nonlinear Convection
by Brian Straughan
-
Directions in Mathematical Systems Theory and Optimization
by Anders Rantzer
-
Numerical "Particle-in-Cell" Methods: Theory and Applications
by Yu.N. Grigoryev
-
The Boundary Element Method for Groundwater Flow
by E.K. Bruch
-
Thermal Physics
by Bruce Hoeneisen
-
Nonlinear Mechanics
by Demeter G. Fertis
-
Minimal Flows and Their Extensions (Volume 153)
by Joseph Auslander
-
Mathematical Modelling of Heat and Mass Transfer Processes
by V.G. Danilov